
A Quick View of Fourier Optics 
The intensity of light falling on a surface can be represented as the square of a supposed 
real wave-function: 
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Where the real wave-function is the real part of a complex wave-function: 
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and the complex wave-function consists of a complex amplitude times the harmonic 
function in time representing the frequency of the light (monochromatic for now): 
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The time independent factor is the complex amplitude and will consist of a harmonic 
function along the axis of travel times an arbitrary amplitude function (arbitrary as long 
as it satisfies the Helmholtz equation): 
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Lets start with a plane wave with complex amplitude: 
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This wave-vector makes angles with the zy,  and zx,  planes: 
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The paraxial approximation holds if the z  component of k  is much larger than either of 
the other two components. 

 

If we cut through this plane wave with constant z  plane and call that location 0=z , then 
the cross section impinging on this plane is the complex amplitude profile of the plane 
wave on this ( )yx,  plane.  (Note that the square of this complex amplitude gives the 
intensity profile on this ( )yx,  plane and in the case of the plane wave it is uniform 
illumination).  

The complex amplitude on the 0=z  plane: 
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Here, xν  and yν are the spatial frequencies of the complex amplitude along the x  and 
y  directions on the 0=z  plane. 

Note now that if the paraxial approximation applies, then: 
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As a side note a hologram or a diffraction grating functions by imposing a 
complex amplitude transmittance at a certain plane so that the transmitted wave 
has this function ),( yxf  forced on it at that plane.  A plane wave in the z  
direction becomes a plane wave in the z  direction plus plane waves at the 
appropriate angles such that the forced spatial frequencies apply.  Since these 
spatial frequencies, which are now forced by transmission properties, would have 
depended on both angle and frequency of an incoming wave, the angle of the 
transmitted wave depends on the temporal frequency of the wave and thus a 
diffraction grating acts to separate different wavelength components of a beam 
into beams in different directions.   

 

 

Now suppose the complex transmittance imposed on a plane wave, or equivalently, the 
complex amplitude cross section of a light beam, ),( yxf , is a superposition of many 
spatial frequencies (for example a combination of spatial frequencies making up a 
photograph). 
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Where ( )yxF νν ,  is the amplitude of the ( )yx νν ,  spatial frequency combination.   Then 
the transmitted light (or the light moving beyond this plane in the beam) can be 
decomposed into a superposition of plane waves such that each combination of spatial 
frequencies, ( )yx νν , , is represented by a plane wave moving in a unique direction. In this 
view, ( )yxF νν ,  is the complex envelope of the plane wave component of the beam 
moving in that unique direction.  The intensity profile of the light on a given plane is the 
square of this resultant complex amplitude function. 
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Seen this way, free space propagation of a beam acts as a “spatial prism” separating the 
spatial frequency components of a beams complex profile just as a prism separates the 
temporal frequency components. 

The function of a lens places the energy of a plane wave at a particular location on the 
focal plane which location is determined by the direction of the plane wave as it impinges 
on the lens.  Since we have a unique direction for every spatial frequency component of a 
beam then we would have a unique location on the focal plane of a lens for each spatial 
frequency component of the beam falling on the lens.  The lens maps each direction, 
( )yx θθ ,  into a single point ( ) ( )yxyx ffffyx νλνλθθ ,,),( ≈= .   

If the complex amplitude of the beam falling on the lens is: ),( yxf then the amplitude of 
a given spatial frequency pair ( )yx νν ,  and thus a given direction  ( )yx θθ , , is the Fourier 
transform of this complex amplitude: 
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Then the complex amplitude of the beam on the focal plane is given by: 
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This means that the complex amplitude on the focal plane is proportional to the Fourier 
transform of the complex amplitude of the beam falling on the lens.   

 

If we begin with an input plane a distance d  from the lens, then the proportionality factor 
can be calculated from the transfer function of the free space traveled and the transfer 
function of the lens.  The final result is that the complex amplitude on the back focal 
plane at the position ),( yx  is proportional to the Fourier transform of the complex 



amplitude on the input plane a distance d in front of the lens evaluated at the frequencies 
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Note that the resultant intensity is independent of the distance d : 

( )

2

2 ,1),( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

f
y

f
xF

f
yxI

λλλ
 

If we set the distance d  equal to the front focal length we simplify the equation a little 
further: 
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Now suppose we put a screen at the back focal length, and screen out some specific 
spatial frequencies, then put another lens one focal length beyond this screen.  On the 
back focal plane of this new lens we will re-image the first plane one focal length in front 
of the first lens but we will have filtered out specific spatial frequency combinations.  For 
example, a screen blocking the central portion near the axis of the system will screen out 
low spatial frequencies and the result is an image outlining the high contrast locations of 
the original.  This is a High Pass filter.  A filter that consists of a small hole around the 
center portion and everything else blocked acts as a Low Pass filter blocking all of the 
high spatial frequencies and resulting in a softened image compared to the original that 
will have slower fluctuation over the image plane.  This situation corresponds to the 
pinhole filtering of a laser beam in a beam expansion telescope. 
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